tensor algebras - significado y definición. Qué es tensor algebras
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es tensor algebras - definición

TENSOR PRODUCT OF ALGEBRAS OVER A FIELD; ITSELF ANOTHER ALGEBRA
Tensor product of R-algebras; Tensor product of rings; Tensor product algebra

Tensor product of algebras         
In mathematics, the tensor product of two algebras over a commutative ring R is also an R-algebra. This gives the tensor product of algebras.
Tensor algebra         
UNIVERSAL CONSTRUCTION IN MULTILINEAR ALGEBRA
Tensor power; Tensor coalgebra; Tensor ring; Tensor-algebra bundle
In mathematics, the tensor algebra of a vector space V, denoted T(V) or T(V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product. It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property (see below).
Tensor density         
GENERALIZATION OF TENSOR FIELDS
Relative tensor; Tensor densities; Vector density
In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another (see tensor field), except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value.

Wikipedia

Tensor product of algebras

In mathematics, the tensor product of two algebras over a commutative ring R is also an R-algebra. This gives the tensor product of algebras. When the ring is a field, the most common application of such products is to describe the product of algebra representations.